Induction of chromosome aberrations in human lymphocytes by monochromatic X-rays of quantum energy between 4.8 and 14.6 keV

Int J Radiat Biol. 1989 Dec;56(6):975-88. doi: 10.1080/09553008914552431.

Abstract

The induction of chromosome aberrations was studied in human peripheral blood lymphocytes irradiated in vitro with synchrotron-produced monochromatic soft X-rays of quantum energy in a range between 4.8 and 14.6 keV. These X-rays were more effective in producing chromosome aberrations (dicentrics and rings) than 60Co gamma-rays. The efficiency increased with increasing LET of the photoelectrons and their associated Auger electrons, reaching a maximum at a track average LET (L delta = 100, T) of around 4 keV/microns, and tended to decrease or become rather refractory with further increase of LET. This unique LET dependency was consistent with the dual nature of chromosome aberration formation, and interpreted as a reflection of a limited range of photoelectrons as compared with the size and intranuclear geometry of the elemental chromatin fibres as vehicles of damage interaction.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Chromosome Aberrations*
  • Energy Transfer
  • Humans
  • In Vitro Techniques
  • Lymphocytes / radiation effects*
  • Relative Biological Effectiveness