The association between ambient air pollution (AAP) exposure and lung cancer risk has been investigated in prospective studies and the results are generally consistent, indicating that long-term exposure to air pollution can cause lung cancer. Biomarkers can enhance research on the health effects of air pollution by improving exposure assessment, increasing the understanding of mechanisms, and enabling the investigation of individual susceptibility. In this review, we assess DNA adducts as biomarkers of exposure to AAP and early biological effect, and DNA methylation as biomarker of early biological change and discuss critical issues arising from their incorporation in AAP health impact evaluations, such as confounding, individual susceptibilities, timing, intensity and duration of exposure, and investigated tissue. DNA adducts and DNA methylation are treated as paradigms. However, the lessons, learned from their use in the examination of AAP carcinogenicity, can be applied to investigations of other biomarkers involved in AAP carcinogenicity.
Keywords: Carcinogenicity; DNA adducts; DNA methylation; ambient air pollution (AAP); biomarkers; lung cancer.