We calculate the rate of nonradiative Auger recombination in negatively charged CdSe nanocrystals (NCs). The rate is nonmonotonic, strongly oscillating with NC size, and sensitive to the NC surface. The oscillations result in nonexponential decay of carriers in NC ensembles. Using a standard single-exponential approximation of the decay dynamics, we determine the apparent size dependence of the Auger rate in an ensemble and derive CdSe surface parameters consistent with the experimental dependence on size.
Keywords: Auger recombination; CdSe; boundary conditions; nanocrystal; quantum dot; trion.