To determine whether initial ligation of the testicular vessels of the high undescended testis followed by a delayed secondary orchiopexy is a viable alternative to the classical Fowler-Stephens procedure, a series of preliminary experiments were conducted in the rat in which testicular blood flow was measured by the 133xenon washout technique before, and 1 hour and 30 days after ligation of the vessels. In addition, testicular histology, and testis and sex-accessory tissue weights were measured in 6 control, 6 sham operated and 6 testicular vessel ligated rats 54 days after vessel ligation. The data demonstrate that ligation and division of the testicular blood vessels produce an 80 per cent decrease in testicular blood flow 1 hour after ligation of the vessels. However, 30 days later testis blood flow returns to the control and pre-treatment value. There were no significant changes in testis or sex-accessory tissue weights 54 days after vessel ligation. Histologically, 4 of the surgically operated testes demonstrated necrosis of less than 25 per cent of the seminiferous tubules while 1 testis demonstrated more than 75 per cent necrosis. The rest of the tubules in all 6 testes demonstrated normal spermatogenesis. From this study we conclude that initial testicular vessel ligation produces an immediate decrease in testicular blood flow but with time the collateral vessels are able to compensate and return the testis blood flow to its normal pre-treatment value. These preliminary observations lend support for the concept that initial ligation of the testicular vessels followed by a delayed secondary orchiopexy in patients with a high undescended testis may be a possible alternative to the classical Fowler-Stephens approach.