It is known that temperature variations and acoustic noise affect ultrastable frequency dissemination along optical fiber. Active stabilization techniques are adopted to compensate for the fiber-induced phase noise. However, despite this compensation, the ultimate link performances are limited by the delay-unsuppressed noise that is related to the propagation delay of the light in the fiber. We demonstrate a post-processing approach which enables us to overcome this limit. We implement a subtraction algorithm between the optical signal delivered at the remote link end and the round-trip signal. In this way, a 6 dB improvement beyond the delay-unsuppressed noise is obtained. We confirm the prediction with experimental data obtained on a 47 km metropolitan fiber link and propose how to extend this method for frequency dissemination.