A molecularly engineered dual-crosslinked hydrogel with extraordinary mechanical properties is reported. The hydrogel network is formed with both chemical crosslinking and acrylic-Fe(III) coordination; these, respectively, impart the elasticity and enhance the mechanical properties by effectively dissipating energy. The optimal hydrogel achieves a tensile stress of ca. 6 MPa at a large elongation ratio (>7 times), a toughness of 27 MJ m(-3) , and a stiffness of ca. 2 MPa, and has good self-recovery properties.
Keywords: dual-crosslinking; hydrogels; self-recovery; ultrahigh strength.
© 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.