Considerations when combining data from multiple nutrition experiments to estimate genetic parameters for feed efficiency

J Dairy Sci. 2015 Apr;98(4):2727-37. doi: 10.3168/jds.2014-8580. Epub 2015 Feb 7.

Abstract

Prior to genomic selection on a trait, a reference population needs to be established to link marker genotypes with phenotypes. For costly and difficult-to-measure traits, international collaboration and sharing of data between disciplines may be necessary. Our aim was to characterize the combining of data from nutrition studies carried out under similar climate and management conditions to estimate genetic parameters for feed efficiency. Furthermore, we postulated that data from the experimental cohorts within these studies can be used to estimate the net energy of lactation (NE(L)) densities of diets, which can provide estimates of energy intakes for use in the calculation of the feed efficiency metric, residual feed intake (RFI), and potentially reduce the effect of variation in energy density of diets. Individual feed intakes and corresponding production and body measurements were obtained from 13 Midwestern nutrition experiments. Two measures of RFI were considered, RFI(Mcal) and RFI(kg), which involved the regression of NE(L )intake (Mcal/d) or dry matter intake (DMI; kg/d) on 3 expenditures: milk energy, energy gained or lost in body weight change, and energy for maintenance. In total, 677 records from 600 lactating cows between 50 and 275 d in milk were used. Cows were divided into 46 cohorts based on dietary or nondietary treatments as dictated by the nutrition experiments. The realized NE(L) densities of the diets (Mcal/kg of DMI) were estimated for each cohort by totaling the average daily energy used in the 3 expenditures for cohort members and dividing by the cohort's total average daily DMI. The NE(L) intake for each cow was then calculated by multiplying her DMI by her cohort's realized energy density. Mean energy density was 1.58 Mcal/kg. Heritability estimates for RFI(kg), and RFI(Mcal) in a single-trait animal model did not differ at 0.04 for both measures. Information about realized energy density could be useful in standardizing intake data from different climate conditions or management systems, as well as investigating potential genotype by diet interactions.

Keywords: energy density; feed efficiency; genetic selection; residual feed intake.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animal Feed / analysis*
  • Animal Nutritional Physiological Phenomena / genetics*
  • Animals
  • Cattle / genetics*
  • Cattle / physiology
  • Diet / veterinary*
  • Energy Intake
  • Female
  • Genome
  • Lactation / genetics*
  • Lactation / physiology