Spatiotemporal dynamics of membrane remodeling and fusion proteins during endocytic transport

Mol Biol Cell. 2015 Apr 1;26(7):1357-70. doi: 10.1091/mbc.E14-08-1318. Epub 2015 Feb 5.

Abstract

Organelles of the endolysosomal system undergo multiple fission and fusion events to combine sorting of selected proteins to the vacuole with endosomal recycling. This sorting requires a consecutive remodeling of the organelle surface in the course of endosomal maturation. Here we dissect the remodeling and fusion machinery on endosomes during the process of endocytosis. We traced selected GFP-tagged endosomal proteins relative to exogenously added fluorescently labeled α-factor on its way from the plasma membrane to the vacuole. Our data reveal that the machinery of endosomal fusion and ESCRT proteins has similar temporal localization on endosomes, whereas they precede the retromer cargo recognition complex. Neither deletion of retromer nor the fusion machinery with the vacuole affects this maturation process, although the kinetics seems to be delayed due to ESCRT deletion. Of importance, in strains lacking the active Rab7-like Ypt7 or the vacuolar SNARE fusion machinery, α-factor still proceeds to late endosomes with the same kinetics. This indicates that endosomal maturation is mainly controlled by the early endosomal fusion and remodeling machinery but not the downstream Rab Ypt7 or the SNARE machinery. Our data thus provide important further understanding of endosomal biogenesis in the context of cargo sorting.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Cell Membrane / metabolism*
  • Endocytosis*
  • Endosomal Sorting Complexes Required for Transport / metabolism*
  • Endosomes / metabolism*
  • Membrane Fusion*
  • Protein Transport
  • SNARE Proteins / metabolism
  • Saccharomyces cerevisiae / metabolism*
  • Saccharomyces cerevisiae Proteins / metabolism
  • Vacuoles / metabolism
  • rab GTP-Binding Proteins / metabolism

Substances

  • Endosomal Sorting Complexes Required for Transport
  • SNARE Proteins
  • Saccharomyces cerevisiae Proteins
  • YPT7 protein, S cerevisiae
  • rab GTP-Binding Proteins