The gradual loss of diversity and the establishment of clines in allele frequencies associated with range expansions are patterns observed in many species, including humans. These patterns can result from a series of founder events occurring as populations colonize previously unoccupied areas. We develop a model of an expanding population and, using a branching process approximation, show that spatial gradients reflect different amounts of genetic drift experienced by different subpopulations. We then use this model to measure the net average strength of the founder effect, and we demonstrate that the predictions from the branching process model fit simulation results well. We further show that estimates of the effective founder size are robust to potential confounding factors such as migration between subpopulations. We apply our method to data from Arabidopsis thaliana. We find that the average founder effect is approximately three times larger in the Americas than in Europe, possibly indicating that a more recent, rapid expansion occurred.
Keywords: Biogeography; gene flow; population genetics; population structure.
© 2015 The Author(s).