The bacterial curli system possesses a potent and selective inhibitor of amyloid formation

Mol Cell. 2015 Feb 5;57(3):445-55. doi: 10.1016/j.molcel.2014.12.025. Epub 2015 Jan 22.

Abstract

Curli are extracellular functional amyloids that are assembled by enteric bacteria during biofilm formation and host colonization. An efficient secretion system and chaperone network ensures that the major curli fiber subunit, CsgA, does not form intracellular amyloid aggregates. We discovered that the periplasmic protein CsgC was a highly effective inhibitor of CsgA amyloid formation. In the absence of CsgC, CsgA formed toxic intracellular aggregates. In vitro, CsgC inhibited CsgA amyloid formation at substoichiometric concentrations and maintained CsgA in a non-β-sheet-rich conformation. Interestingly, CsgC inhibited amyloid assembly of human α-synuclein, but not Aβ42, in vitro. We identified a common D-Q-Φ-X0,1-G-K-N-ζ-E motif in CsgC client proteins that is not found in Aβ42. CsgC is therefore both an efficient and selective amyloid inhibitor. Dedicated functional amyloid inhibitors may be a key feature that distinguishes functional amyloids from disease-associated amyloids.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amino Acid Motifs
  • Amyloid beta-Peptides / metabolism
  • Base Sequence
  • Escherichia coli / genetics*
  • Escherichia coli / metabolism
  • Escherichia coli Proteins / chemistry
  • Escherichia coli Proteins / genetics
  • Escherichia coli Proteins / metabolism*
  • Escherichia coli Proteins / pharmacology*
  • Humans
  • In Vitro Techniques
  • Molecular Sequence Data
  • Protein Aggregates / drug effects*
  • Protein Structure, Secondary
  • alpha-Synuclein / chemistry
  • alpha-Synuclein / metabolism*

Substances

  • Amyloid beta-Peptides
  • CsgC protein, E coli
  • Escherichia coli Proteins
  • Protein Aggregates
  • alpha-Synuclein
  • csgA protein, E coli