The current diagnostic work-up and monitoring of pulmonary infections may be perceived as invasive, is time consuming and expensive. In this explorative study, we investigated whether or not a non-invasive exhaled breath analysis using an electronic nose would discriminate between cystic fibrosis (CF) and primary ciliary dyskinesia (PCD) with or without various well characterized chronic pulmonary infections. We recruited 64 patients with CF and 21 with PCD based on known chronic infection status. 21 healthy volunteers served as controls. An electronic nose was employed to analyze exhaled breath samples. Principal component reduction and discriminant analysis were used to construct internally cross-validated receiver operator characteristic (ROC) curves. Breath profiles of CF and PCD patients differed significantly from healthy controls p = 0.001 and p = 0.005, respectively. Profiles of CF patients having a chronic P. aeruginosa infection differed significantly from to non-chronically infected CF patients p = 0.044. We confirmed the previously established discriminative power of exhaled breath analysis in separation between healthy subjects and patients with CF or PCD. Furthermore, this method significantly discriminates CF patients suffering from a chronic pulmonary P. aeruginosa (PA) infection from CF patients without a chronic pulmonary infection. Further studies are needed for verification and to investigate the role of electronic nose technology in the very early diagnostic workup of pulmonary infections before the establishment of a chronic infection.