Objectives: To study whether 60-Hz stimulation, compared with routine 130 Hz, improves swallowing function and freezing of gait (FOG) in patients with Parkinson disease (PD) who undergo bilateral subthalamic nucleus (STN) deep brain stimulation (DBS).
Methods: We studied 7 patients with PD who experienced FOG that persisted despite routine 130-Hz stimulation and dopaminergic medication. Each patient received 3 modified barium swallow (MBS) studies in a single day under 3 DBS conditions in the medication-on state: 130 Hz, 60 Hz, or DBS off, in a randomized double-blind manner. The laryngeal penetration and aspiration events were cautiously assessed, and a swallowing questionnaire was completed. The Unified Parkinson's Disease Rating Scale, Part III motor score, axial subscore, tremor subscore, and FOG by a questionnaire and stand-walk-sit test were also assessed. The best DBS condition (60 Hz here) producing the least FOG was maintained for 3 to 8 weeks, and patients were assessed again. Changes in measurements between the 60 Hz and 130 Hz were analyzed using paired t test, with swallowing function as primary and the remainder as secondary outcomes. Changes between other DBS conditions were further explored with Bonferroni correction.
Results: Compared with the routine 130 Hz, 60-Hz stimulation significantly reduced aspiration frequency by 57% on MBS study and perceived swallowing difficulty by 80% on questionnaire. It also significantly reduced FOG, and axial and parkinsonian symptoms. The benefits at 60-Hz stimulation persisted over the average 6-week assessment.
Conclusions: Compared with the routine 130 Hz, the 60-Hz stimulation significantly improved swallowing function, FOG, and axial and parkinsonian symptoms in patients with PD treated with bilateral STN-DBS, which persisted over the 6-week study period.
Classification of evidence: This study provides Class IV evidence that for patients with PD who experience FOG, STN-DBS at 60 Hz decreases aspiration events observed during MBS compared with DBS at 130 Hz.
© 2014 American Academy of Neurology.