The development of nanomaterials that combine diagnostic and therapeutic functions within a single nanoplatform is extremely important for molecular medicine. Molecular imaging with simultaneous diagnosis and therapy will provide the multimodality needed for accurate diagnosis and targeted therapy. Here, we demonstrate gold-coated iron oxide (Fe3O4@Au) nanoroses with five distinct functions, which integrate aptamer-based targeting, magnetic resonance imaging (MRI), optical imaging, photothermal therapy and chemotherapy into one single probe. The inner Fe3O4 core functions as an MRI agent, while the photothermal effect is achieved through near-infrared absorption by the gold shell, causing a rapid rise in temperature and also resulting in a facilitated release of the anticancer drug doxorubicin carried by the nanoroses. Where the doxorubicin is released is monitored by its fluorescent. Aptamers immobilized on the surfaces of the nanoroses enable efficient and selective drug delivery, imaging and photothermal effect with high specificity. The five-function-embedded nanoroses show great advantages in multimodality.
Keywords: cancer cells; chemotherapy; imaging; nanorose; photothermal therapy.