Human mesenchymal or stromal cells (hMSCs) isolated from various adult tissues are primary candidates in cell therapy and tissue regeneration. Despite promising results in preclinical studies, robust therapeutic responses to MSC treatment have not been reproducibly demonstrated in clinical trials. In the translation of MSC-based therapy to clinical application, studies of MSC metabolism have significant implication in optimizing bioprocessing conditions to obtain therapeutically competent hMSC population for clinical application. In addition, understanding the contribution of metabolic cues in directing hMSC fate also provides avenues to potentiate their therapeutic effects by modulating their metabolic properties. This review focuses on MSC metabolism and discusses their unique metabolic features in the context of common metabolic properties shared by stem cells. Recent advances in the fundamental understanding of MSC metabolic characteristics in relation to their in vivo origin and metabolic regulation during proliferation, lineage-specific differentiation, and exposure to in vivo ischemic conditions are summarized. Metabolic strategies in directing MSC fate to enhance their therapeutic potential in tissue engineering and regenerative medicine are discussed.
Keywords: apoptosis; differentiation; energy metabolism; expansion; glucose; hypoxia; mesenchymal stem or stromal cells; transplantation.
© 2014 American Institute of Chemical Engineers.