Aim: We sought develop and characterize a diet-induced model of metabolic syndrome and its related diseases.
Methods: The experimental animals (Spague-Dawley rats) were randomly divided into two groups, and each group was fed a different feed for 48 weeks as follows: 1) standard control diet (SC), and 2) a high sucrose and high fat diet (HSHF). The blood, small intestine, liver, pancreas, and adipose tissues were sampled for analysis and characterization.
Results: Typical metabolic syndrome (MS), non-alcoholic fatty liver disease (NAFLD), and type II diabetes (T2DM) were common in the HSHF group after a 48 week feeding period. The rats fed HSHF exhibited signs of obesity, dyslipidemia, hyperglycaemia, glucose intolerance, and insulin resistance (IR). At the same time, these animals had significantly increased levels of circulating LPS, TNFα, and IL-6 and increased ALP in their intestinal tissue homogenates. These animals also showed a significant reduction in the expression of occluding protein. The HSHF rats showed fatty degeneration, inflammation, fibrosis, cirrhosis, and lipid accumulation when their liver pathologies were examined. The HSHF rats also displayed increased islet diameters from 12 to 24 weeks, while reduced islet diameters occurred from 36 to 48 weeks with inflammatory cell infiltration and islet fat deposition. The morphometry of adipocytes in HSHF rats showed hypertrophy and inflammatory cell infiltration. HSHF CD68 analysis showed macrophage infiltration and significant increases in fat and pancreas size. HSHF Tunel analysis showed significant increases in liver and pancreas cell apoptosis.
Conclusions: This work demonstrated the following: 1) a characteristic rat model of metabolic syndrome (MS) can be induced by a high sucrose and high fat diet, 2) this model can be used to research metabolic syndrome and its related diseases, such as NAFLD and T2DM, and 3) intestinal endotoxemia (IETM) may play an important role in the pathogenesis of MS and related diseases, such as NAFLD and T2DM.