Fertility is a major concern in the dairy cattle industry and has been the subject of numerous studies over the past 20 years. Surprisingly, most of these studies focused on rough female phenotypes and, despite their important role in reproductive success, male- and embryo-related traits have been poorly investigated. In recent years, the rapid and important evolution of technologies in genetic research has led to the development of genomic selection. The generalisation of this method in combination with the achievements of the AI industry have led to the constitution of large databases of genotyping and sequencing data, as well as refined phenotypes and pedigree records. These resources offer unprecedented opportunities in terms of fundamental and applied research. Here we present five such examples with a focus on reproduction-related traits: (1) detection of quantitative trait loci (QTL) for male fertility and semen quality traits; (2) detection of QTL for refined phenotypes associated with female fertility; (3) identification of recessive embryonic lethal mutations by depletion of homozygous haplotypes; (4) identification of recessive embryonic lethal mutations by mining whole-genome sequencing data; and (5) the contribution of high-density single nucleotide polymorphism chips, whole-genome sequencing and imputation to increasing the power of QTL detection methods and to the identification of causal variants.