Ureter tracking and segmentation in CT urography (CTU) using COMPASS

Med Phys. 2014 Dec;41(12):121906. doi: 10.1118/1.4901412.

Abstract

Purpose: The authors are developing a computerized system for automated segmentation of ureters in CTU, referred to as combined model-guided path-finding analysis and segmentation system (COMPASS). Ureter segmentation is a critical component for computer-aided diagnosis of ureter cancer.

Methods: COMPASS consists of three stages: (1) rule-based adaptive thresholding and region growing, (2) path-finding and propagation, and (3) edge profile extraction and feature analysis. With institutional review board approval, 79 CTU scans performed with intravenous (IV) contrast material enhancement were collected retrospectively from 79 patient files. One hundred twenty-four ureters were selected from the 79 CTU volumes. On average, the ureters spanned 283 computed tomography slices (range: 116-399, median: 301). More than half of the ureters contained malignant or benign lesions and some had ureter wall thickening due to malignancy. A starting point for each of the 124 ureters was identified manually to initialize the tracking by COMPASS. In addition, the centerline of each ureter was manually marked and used as reference standard for evaluation of tracking performance. The performance of COMPASS was quantitatively assessed by estimating the percentage of the length that was successfully tracked and segmented for each ureter and by estimating the average distance and the average maximum distance between the computer and the manually tracked centerlines.

Results: Of the 124 ureters, 120 (97%) were segmented completely (100%), 121 (98%) were segmented through at least 70%, and 123 (99%) were segmented through at least 50% of its length. In comparison, using our previous method, 85 (69%) ureters were segmented completely (100%), 100 (81%) were segmented through at least 70%, and 107 (86%) were segmented at least 50% of its length. With COMPASS, the average distance between the computer and the manually generated centerlines is 0.54 mm, and the average maximum distance is 2.02 mm. With our previous method, the average distance between the centerlines was 0.80 mm, and the average maximum distance was 3.38 mm. The improvements in the ureteral tracking length and both distance measures were statistically significant (p < 0.0001).

Conclusions: COMPASS improved significantly the ureter tracking, including regions across ureter lesions, wall thickening, and the narrowing of the lumen.

Publication types

  • Evaluation Study
  • Research Support, N.I.H., Extramural

MeSH terms

  • Humans
  • Image Processing, Computer-Assisted / methods
  • Organ Size
  • Pattern Recognition, Automated / methods*
  • Retrospective Studies
  • Tomography, X-Ray Computed / methods*
  • Ureter / diagnostic imaging*
  • Ureteral Diseases / diagnostic imaging
  • Urography / methods