T cells modified with chimeric antigen receptor are an attractive strategy to treat Epstein-Barr virus (EBV) associated malignancies. The EBV latent membrane protein 1 (LMP1) is a 66-KD integral membrane protein encoded by EBV that consists of transmembrane-spanning loops. Previously, we have identified a functional signal chain variable fragment (scFv) that specifically recognizes LMP1 through phage library screening. Here, we constructed a LMP1 specific chimeric antigen receptor containing anti-LMP1 scFv, the CD28 signalling domain, and the CD3ζ chain (HELA/CAR). We tested its functional ability to target LMP1 positive nasopharyngeal carcinoma cells. HELA/CAR cells were efficiently generated using lentivirus vector encoding the LMP1-specific chimeric antigen receptor to infect activated human CD3+ T cells. The HELA/CAR T cells displayed LMP1 specific cytolytic action and produced IFN-γ and IL-2 in response to nasopharyngeal carcinoma cells overexpressing LMP1. To demonstrate in vivo anti-tumor activity, we tested the HELA/CAR T cells in a xenograft model using an LMP1 overexpressing tumor. Intratumoral injection of anti-LMP1 HELA/CAR-T cells significantly reduced tumor growth in vivo. These results show that targeting LMP1 using HELA/CAR cells could represent an alternative therapeutic approach for patients with EBV-positive cancers.
Keywords: EBV; LMP1; adoptive T cell therapy; chimeric antigen receptor; nasopharyngeal carcinoma.