Although improvement in cardiopulmonary resuscitation (CPR) performance and the increasing success at achieving return of spontaneous circulation (ROSC) have been possible in recent years, the survival and discharge rates of post-cardiac arrest (CA) patients remain disappointing. The high mortality rate is attributed to whole-body ischemia/reperfusion (I/R) induced multi-organ dysfunction that is well known as post-cardiac arrest syndrome. Post-cardiac arrest myocardial dysfunction and brain injury are the main clinical features of this complex pathophysiological process. Previous evidences have shown that volatile anesthetics, such as isoflurane, trigger a powerful and highly integrated cell survival response during I/R period in multiple organs, including heart and brain, which reduces I/R injury. This effect that called anesthetic-induced postconditioning can be shown when volatile anesthetics are administered after the onset of ischemia and at the time of reperfusion. Emulsified isoflurane (EIso) is a new anesthetic for intravenous administration, which is conveniently feasible outside operating room. Therefore, we hypothesize that EIso postconditioning could provide the cardiocerebral protection, and combined with therapeutic hypothermia as sedative agent could produce enhanced cardiocerebral protection, which can result in significant improvement of neurologically intact post-cardiac arrest survival. We consider that it would become a feasible, safe and efficient cardiocerebral protective intervention in the prevention and alleviation of post-cardiac arrest syndrome, which would also improve the outcomes after CA.
Copyright © 2014 Elsevier Ltd. All rights reserved.