Exposure to cigarette smoke can initiate sterile inflammatory responses in the lung and activate myeloid dendritic cells (mDCs) that induce differentiation of T helper type 1 (Th1) and Th17 cells in the emphysematous lungs. Consumption of complement proteins increases in acute inflammation, but the contribution of complement protein 3 (C3) to chronic cigarette smoke-induced immune responses in the lung is not clear. Here, we show that following chronic exposure to cigarette smoke, C3-deficient (C3(-/-)) mice develop less emphysema and have fewer CD11b(+)CD11c(+) mDCs infiltrating the lungs as compared with wild-type mice. Proteolytic cleavage of C3 by neutrophil elastase releases C3a, which in turn increases the expression of its receptor (C3aR) on lung mDCs. Mice deficient in the C3aR (C3ar(-/-)) partially phenocopy the attenuated responses to chronic smoke observed in C3(-/-) mice. Consistent with a role for C3 in emphysema, C3 and its active fragments are deposited on the lung tissue of smokers with emphysema, and smoke-exposed mice. Together, these findings suggest a critical role for C3a through autocrine/paracrine induction of C3aR in the pathogenesis of cigarette smoke-induced sterile inflammation and provide new therapeutic targets for the treatment of emphysema.