Culturing aortic valvular interstitial cells in an environment that models the aortic valve is an essential step towards understanding the progression of calcific aortic valve disease. Here the adaption of a three-dimensional (3-D) stacked paper-based culture system is presented for analyzing valve cells in a thick collagen gel matrix. Filter paper layers, modeled after a 96-well plate design, were printed with a wax well-plate template and then seeded with valve cell and collagen mixtures that quickly gelled into 3-D cultures. Stacking these layers permitted extensive customization of culture thickness and cell density profiles to model the full thickness of native valve tissue. Aortic valvular interstitial cells seeded into the paper-based constructs consistently demonstrated high survival up to 14 days of culture with significant increases in cell number through the first 3 days of culture. After 4 days following seeding, valve cells in single layer cultures showed reduced smooth muscle α-actin expression with a stabilized cell density, suggesting a transition from an activated phenotype to a more quiescent state. Valve cells in multilayer cultures demonstrated the ability to migrate from layer to layer and had the highest smooth muscle α-actin expression in areas with predicted low oxygen tensions. These results establish the filter-paper-based method as a viable culture system for analyzing valve cells in an in vitro 3-D model of the aortic valve.
Keywords: Cell activation; Collagen; ECM (extracellular matrix); Heart valve.
Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.