S-Nitrosothiol-modified chitosan oligosaccharides were synthesized by reaction with 2-iminothiolane hydrochloride and 3-acetamido-4,4-dimethylthietan-2-one, followed by thiol nitrosation. The resulting nitric oxide (NO)-releasing chitosan oligosaccharides stored ∼0.3μmol NO mg(-1) chitosan. Both the chemical structure of the nitrosothiol (i.e. primary and tertiary) and the use of ascorbic acid as a trigger for NO donor decomposition were used to control the NO-release kinetics. With ascorbic acid, the S-nitrosothiol-modified chitosan oligosaccharides elicited a 4-log reduction in Pseudomonas aeruginosa viability. Confocal microscopy indicated that the primary S-nitrosothiol-modified chitosan oligosaccharides associated more with the bacteria relative to the tertiary S-nitrosothiol system. The primary S-nitrosothiol-modified chitosan oligosaccharides elicited minimal toxicity towards L929 mouse fibroblast cells at the concentration necessary for a 4-log reduction in bacterial viability, further demonstrating the potential of S-nitrosothiol-modified chitosan oligosaccharides as NO-release therapeutics.
Keywords: Ascorbic acid; Chitosan; Nitric oxide; S-Nitrosothiol; Synergy.
Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.