Replication-coupled destruction of a cohort of cell cycle proteins ensures efficient and precise genome duplication. Three proteins destroyed during replication via the CRL4(CDT2) ubiquitin E3 ligase, CDT1, p21, and SET8 (PR-SET7), are also essential or important during mitosis, making their reaccumulation after S phase a critical cell cycle event. During early and mid-S phase and during DNA repair, proliferating cell nuclear antigen (PCNA) loading onto DNA (PCNA(DNA)) triggers the interaction between CRL4(CDT2) and its substrates, resulting in their degradation. We have discovered that, beginning in late S phase, PCNA(DNA) is no longer sufficient to trigger CRL4(CDT2)-mediated degradation. A CDK1-dependent mechanism that blocks CRL4(CDT2) activity by interfering with CDT2 recruitment to chromatin actively protects CRL4(CDT2) substrates. We postulate that deliberate override of replication-coupled destruction allows anticipatory accumulation in late S phase. We further show that (as for CDT1) de novo SET8 reaccumulation is important for normal mitotic progression. In this manner, CDK1-dependent CRL4(CDT2) inactivation contributes to efficient transition from S phase to mitosis.
Keywords: CDT1; CDT2; Cell Cycle; Cyclin-dependent Kinase (CDK); DNA Replication; E3 Ubiquitin Ligase; Mitosis; PCNA; SET8; p21.
© 2015 by The American Society for Biochemistry and Molecular Biology, Inc.