Schizophrenia is a highly heritable and polygenic disease, and identified common genetic variants have shown weak individual effects. Many studies have reported altered working memory (WM)-related brain activation in schizophrenia, preferentially in the frontal lobe. Such differences in brain activations could reflect inherited alterations possibly involved in the disease etiology, or rather secondary disease-related mechanisms. The use of polygenic risk scores (PGRS) based on a large number of risk polymorphisms with small effects is a valuable approach to examine the effect of cumulative genetic risk on brain functioning. This study examined the impact of cumulative genetic risk for schizophrenia on WM-related brain activations, assessed with functional magnetic resonance imaging. For each participant (63 schizophrenia patients and 118 healthy controls), we calculated a PGRS for schizophrenia based on 18 862 single-nucleotide polymorphism in a large multicenter genome-wide association study including 9146 schizophrenia patients and 12 111 controls, performed by the Psychiatric Genomics Consortium. As expected, the PGRS was significantly higher in patients compared with healthy controls. Further, the PGRS was related to differences in frontal lobe brain activation between high and low WM demand. Specifically, even in absence of main effects of diagnosis, increased PGRS was associated with decreased activation difference in the right middle-superior prefrontal cortex (BA 10/11) and the right inferior frontal gyrus (BA 45). This effect was seen in both cases and controls, and was not influenced by sex, age, or task performance. The findings support the notion of dysregulation of frontal lobe functioning as an inherited vulnerability factor in schizophrenia.
Keywords: fMRI; polygenic; schizophrenia.
© The Author 2014. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. All rights reserved. For permissions, please email: journals.permissions@oup.com.