We investigated the use and possible mechanisms mediating the increased energy expenditure (EE) previously described for rats subjected to total or paradoxical sleep deprivation. Bomb calorimetry of wastes showed that during deprivation the efficiency of energy utilization was not reduced. Estimates of CO2 production by the doubly labelled water method of indirect calorimetry correlated with EE estimated from the caloric value of food, weight change, and wastes and confirmed an increase in EE during deprivation. Core temperatures decreased during the later stages of deprivation, suggesting the hypothesis that excessive heat loss may have required increased EE to protect body temperature. The increased EE could not be explained by the metabolic cost of increase wakefulness, water exposure, or motor activity; an increase in resting EE was indicated. The contribution of the hypothalamic-pituitary-adrenal axis, thyroid gland, and sympathoadrenal system to the mediation of the EE increases was evaluated by measuring the plasma levels of their hormones. Results appear to rule out the first as a mediator. Evidence for the other two was equivocal.