A supramolecular reaction system is reported where a labile molecular metal oxide cluster enables the unprecedented dimerisation of ruthenium photosensitizers [Ru(L)2(tmbiH2)](2+) (L = 4,4'-di-tert-butyl-2,2'-bipyridine (1a) or 2,2'-bipyridine (1b); tmbiH2 = 5,5',6,6'-tetramethyl-2,2'-bibenzimidazole). In the presence of [Mo8O26](4-) clusters (2) the dimerisation is triggered by the in situ conversion of [Mo8O26](4-) to [Mo6O19](2-) which results in the release of hydroxide ions. Simultaneous deprotonation of the pH-sensitive tmbiH2-ligands starts the dimerisation, resulting in the formation of the dinuclear complex [(Ru(L)2)2(tmbi)](2+) (L = 4,4'-di-tert-butyl-2,2'-bipyridine (3) or 2,2'-bipyridine (4)). The dimerisation reaction can be suppressed when 2 is replaced by a stable polyoxomolybdate cluster, [Mo5O15(PhPO3)2](4-) (5) and the reaction between 1a and 5 leads to the formation of hydrogen-bonded supramolecular aggregates 6. The solution and solid-state interactions in these systems were investigated using a range of spectroscopic and crystallographic techniques and compounds 3, 4 and 6 were characterized using single-crystal XRD.