Here, we propose that the heterogeneity of mutational types in populations underpins alternative pathways of evolutionary adaptation. Point mutations, deletions, insertions, transpositions and duplications cause different biological effects and provide distinct adaptive possibilities. Experimental evidence for this notion comes from the mutational origins of adaptive radiations in large, clonal bacterial populations. Independent sympatric lineages with different phenotypes arise from distinct genetic events including gene duplication, different insertion sequence movements and several independent point mutations. The breadth of the mutational spectrum in the ancestral population should be viewed as a form of bet-hedging, reducing the risk of evolutionary dead ends and complementing the phenotypic and epigenetic heterogeneities that improve the survival capabilities of a population. Different mutational events arise from distinct cellular processes and are subject to separate environmental impacts, so the availability of any particular type of mutation may constrain or promote adaptive pathways in populations.
Keywords: E. coli; double-strand DNA breaks (DSBs); evolutionary divergence; experimental evolution; mutational spectrum; population heterogeneity.
© 2015 WILEY Periodicals, Inc.