Studies on Chlamydomonas chloroplast transformation: foreign DNA can be stably maintained in the chromosome

Plant Cell. 1989 Jan;1(1):123-32. doi: 10.1105/tpc.1.1.123.

Abstract

As shown originally by Boynton and co-workers (Boynton, J.E., Gillham, N.W., Harris, E.H., Hosler, J.P., Johnson, A.M., Jones, A.R., Randolph-Anderson, B.L., Robertson, D., Klein, T.M., Shark, K.B., and Sanford, J.C. [1988]. Science 240, 1534-1538), a nonphotosynthetic, acetate-requiring mutant strain of Chlamydomonas reinhardtii with a 2.5-kilobase pair deletion in the chloroplast Bam 10 restriction fragment region that removes the 3' half of the atpB gene and a portion of one inverted repeat can be transformed to photosynthetic competency following bombardment with microprojectiles coated with wild-type Bam 10 DNA. We have found that assorted other circular plasmids, single-strand DNA circles, or linear, duplex DNA molecules containing the wild-type atpB gene can also complement the same mutant. DNA gel blot hybridization analysis of all such transformants indicates that the complementing DNA has integrated into the chromosome at the atpB locus and suggests that a copy-correction mechanism operating between the inverted repeats maintains sequence identity in this region. Sequences from the intact inverted repeat may be recruited to restore the incomplete copy when exogenous DNA with only a portion of the deleted sequence is introduced. Furthermore, a foreign, unselected-for, chimeric gene flanked by chloroplast DNA sequences can be integrated and maintained stably in the chloroplast chromosome. The bacterial neomycin phosphotransferase structural gene fused to the maize chloroplast promoter for the large subunit gene of ribulose-1,5-biphosphate carboxylase (rbcL) has been integrated into the inverted repeat region of the Bam10 restriction fragment. RNA transcripts that hybridize to the introduced foreign gene have been identified.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Base Sequence
  • Chlamydomonas reinhardtii / genetics*
  • Chloroplasts / metabolism*
  • Chromosomes / metabolism
  • Cloning, Molecular
  • DNA, Recombinant / metabolism*
  • Genetic Complementation Test
  • Molecular Sequence Data
  • Repetitive Sequences, Nucleic Acid
  • Restriction Mapping
  • Transformation, Genetic*

Substances

  • DNA, Recombinant