Lysine-specific demethylase 1 (Lsd1) is associated with transcriptional coregulation via the modulation of histone methylation. The expression pattern and function of zebrafish Lsd1 has not, however, been studied. Here, we describe the pattern of zebrafish Lsd1 expression during different development stages. In the zebrafish embryo, lsd1 mRNA was present during the early cleavage stage, indicating that maternally derived Lsd1 protein is involved in embryonic patterning. During embryogenesis from 0 to 48 hours post-fertilization (hpf), the expression of lsd1 mRNA in the embryo was ubiquitous before 12 hpf and then became restricted to the anterior of the embryo (particularly in the brain) from 24 hpf to 72 hpf. Inhibition of Lsd1 activity (by exposure to tranylcypromine) or knockdown of lsd1 expression (by morpholino antisense oligonucleotide injection) led to the loss of cells in the brain and to a dramatic downregulation of neural genes, including gad65, gad75, and reelin, but not hey1. These findings indicate an important role of Lsd1 during nervous system development in zebrafish.
Keywords: brain; embryonic development; histone demethylase; histone methylation; lysine-specific demethylase; morpholino; nerve cells; neural regeneration; tranylcypromine; zebrafish.