Introduction: Variably protease sensitive prionopathy (VPSPr) is a recently described, sporadic human prion disease that is pathologically and biochemically distinct from the currently recognised sporadic Creutzfeldt-Jakob disease (sCJD) subtypes. The defining biochemical features of the abnormal form of the prion protein (PrPSc) in VPSPr are increased sensitivity to proteolysis and the presence of an N- and C-terminally cleaved ~8 kDa protease resistant PrPSc (PrPres) fragment. The biochemical and neuropathological profile of VPSPr has been proposed to resemble either Gerstmann-Sträussler-Scheinker syndrome (GSS) or familial CJD with the PRNP-V180I mutation. However, in some cases of VPSPr two protease resistant bands have been observed in Western blots that co-migrate with those of type 2 PrPres, suggesting that a proportion of the PrPSc present in VPSPr has properties similar to those of sCJD.
Results: Here, we have used conformation dependent immunoassay to confirm the presence of PrPSc in VPSPr that is more protease sensitive compared with sCJD. However, CDI also shows that a proportion of PrPSc in VPSPr resists PK digestion of its C-terminus, distinguishing it from GSS associated with ~8 kDa PrPres, and showing similarity to sCJD. Intensive investigation of a single VPSPr case with frozen tissue from multiple brain regions shows a broad, region-specific spectrum of protease sensitivity and differential stability of PrPSc in the absence of PK treatment. Finally, using protein misfolding cyclic amplification and real-time quaking induced conversion, we show that VPSPr PrPSc has the potential to seed conversion in vitro and that seeding activity is dispersed through a broad range of aggregate sizes. We further propose that seeding activity is associated with the ~19 and ~23 kDa PrPres rather than the ~8 kDa fragment.
Conclusions: Therefore, PrPSc in VPSPr is heterogeneous in terms of protease sensitivity and stability to denaturation with the chaotrope GdnHCl and includes a proportion with similar properties to that found in sCJD.