Silencing gene expression by harnessing the RNA interference (RNAi) pathway with short interfering RNAs (siRNAs) has useful analytical and potentially therapeutic application. To augment silencing efficacy of siRNAs, chemical modification has been employed to improve stability, target specificity, and delivery to target tissues. siRNAs incorporating guanidinopropyl (GP) moieties have demonstrated enhanced target gene silencing in cell culture and in vivo models of hepatitis B virus replication. Here we describe the synthesis of GP-modified siRNAs and use of 5' rapid amplification of cDNA ends (5' RACE) to verify an RNAi-mediated mechanism of action of these novel chemically modified siRNAs.