Subcellular organelle-specific reagents for simultaneous tumor targeting, imaging, and treatment are of enormous interest in cancer therapy. Herein, we present a mitochondria-targeting probe (AIE-mito-TPP) by conjugating a triphenylphosphine (TPP) with a fluorogen which can undergo aggregation-induced emission (AIE). Owing to the more negative mitochondrial membrane potential of cancer cells than normal cells, the AIE-mito-TPP probe can selectively accumulate in cancer-cell mitochondria and light up its fluorescence. More importantly, the probe exhibits selective cytotoxicity for studied cancer cells over normal cells. The high potency of AIE-mito-TPP correlates with its strong ability to aggregate in mitochondria, which can efficiently decrease the mitochondria membrane potential and increase the level of intracellular reactive oxygen species (ROS) in cancer cells. The mitochondrial light-up probe provides a unique strategy for potential image-guided therapy of cancer cells.
Keywords: aggregation-induced emission; bioimaging; cancer cells; imaging agents; mitochondria.
© 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.