While immunotherapies are rapidly becoming mainstays of cancer treatment, significant gaps remain in our understanding of how to optimally target them, alone or in combination. Here we describe a novel method to monitor levels of immune cells and pathways in expression data from solid tumors using pre-defined groups or modules of co-regulated immune genes. We show that expression of an interconnected sub-network of type I interferon-stimulated genes (ISGs) in melanomas at the time of diagnosis significantly predicted patient survival, as did, to a lesser extent, sub-networks of T helper/T regulatory and NK/T Cytotoxic cell genes. As a group, poor prognosis tumors with reduced ISG and immune gene levels exhibited significant copy number loss of the interferon gene cluster located at chromosome 9p21.3. Our studies demonstrate a link between type I interferon action and immune cell levels in melanomas, and suggest that therapeutic approaches augmenting both activities may be most beneficial.