Disruption of microRNA-21 by TALEN leads to diminished cell transformation and increased expression of cell-environment interaction genes

Cancer Lett. 2015 Jan 28;356(2 Pt B):506-516. doi: 10.1016/j.canlet.2014.09.034. Epub 2014 Oct 7.

Abstract

MicroRNA-21 is dysregulated in many cancers and fibrotic diseases. Since miR-21 suppresses several tumor suppressor and anti-apoptotic genes, it is considered a cancer therapeutic target. Antisense oligonucleotides are commonly used to inhibit a miRNA; however, blocking miRNA function via an antagomir is temporary, often only achieves a partial knock-down, and may be complicated by off-target effects. Here, we used transcription activator-like effector nucleases (TALENs) to disrupt miR-21 in cancerous cells. Individual deletion clones were screened and isolated without drug selection. Sequencing and quantitative RT-PCR identified clones with no miR-21 expression. The loss of miR-21 led to subtle but global increases of mRNAs containing miR-21 target sequences. Cells without miR-21 became more sensitive to cisplatin and less transformed in culture and in mouse xenografts. In addition to the increase of PDCD4 and PTEN protein, mRNAs for COL4A1, JAG1, SERPINB5/Maspin, SMAD7, and TGFBI - all are miR-21 targets and involved in TGFβ and fibrosis regulation - were significantly upregulated in miR-21 knockout cells. Gene ontology and pathway analysis suggested that cell-environment interactions involving extracellular matrix can be an important miR-21 pathogenic mechanism. The study also demonstrates the value of using TALEN-mediated microRNA gene disruption in human pathobiological studies.

Keywords: TALEN; cancer; extracellular matrix; gene editing; miR-21; microRNA.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Biomarkers, Tumor / genetics
  • Biomarkers, Tumor / metabolism*
  • Cell Transformation, Neoplastic / metabolism*
  • Cell Transformation, Neoplastic / pathology*
  • Endonucleases / genetics
  • Endonucleases / metabolism*
  • Female
  • High-Throughput Nucleotide Sequencing
  • Humans
  • Mice
  • Mice, Inbred NOD
  • Mice, SCID
  • MicroRNAs / antagonists & inhibitors*
  • MicroRNAs / genetics
  • RNA, Messenger / genetics
  • Real-Time Polymerase Chain Reaction
  • Reverse Transcriptase Polymerase Chain Reaction
  • Transcription Factors / genetics
  • Transcription Factors / metabolism*
  • Transcriptional Activation
  • Tumor Cells, Cultured
  • Tumor Microenvironment / genetics*
  • Uterine Cervical Neoplasms / genetics
  • Uterine Cervical Neoplasms / metabolism
  • Uterine Cervical Neoplasms / pathology*
  • Xenograft Model Antitumor Assays

Substances

  • Biomarkers, Tumor
  • MIRN21 microRNA, human
  • MicroRNAs
  • RNA, Messenger
  • Transcription Factors
  • Endonucleases