'Septal bounce' is a pathognomonic sign of constrictive pericarditis (CP). The objectives of the study are to resolve the etiology of the septal bounce, to generate septal bounce-related diagnostic tools, and to prove that its presence is related to the mechanical interaction between the atrioventricular inflow and the inter-ventricular septum. We compared steady state free precession four-chamber images between 11 CP patients and 11 controls via cardiac magnetic resonance. The septal bounce was composed of two movements observed during every cardiac cycle, simultaneous with the rapid filling and atrial systole respectively. Three parameters (measured at end-systole) were generated: right ventricular (RV) clamp (compression ratio of the RV)-greater in CP (0.88 ± 0.03) than controls (0.85 ± 0.03, p = 0.02), tri-septal angle between the tricuspid valve annulus plane and the interventricular septum (81° ± 9° vs. 91° ± 7°, p = 0.01), and impact angle between the tricuspid inflow vector and septum (8.6° ± 8.7° vs. 0° ± 6.6°, p = 0.01). The accuracy, positive predictive value, sensitivity and specificity of these parameters in differentiating CP from controls ranged from 100 to 82 %. A forth parameter-septal flow ratio, gauging the proportion of tricuspid inflow impacting the septum, was markedly higher in CP than controls (0.38 ± 0.19 vs. 0.01 ± 0.03, p < 0.0001) with 100 % sensitivity, specificity, positive and negative predictive value. The septal bounce consists of two sequential movements during each cardiac cycle, is time-related with the rapid ventricular filling and atrial systole, and likely represents a result of the tricuspid blood inflow impacting the interventricular septum. Four septal bounce-derived parameters have a good accuracy in differentiating CP from volunteers.