Pancreatic cancer is one of the most lethal malignancies, with a poor response to chemotherapy and therefore it is important to identify novel therapeutic targets. TNF receptor-associated factor 6 (TRAF6) , a regulator of NF-κB signaling, has been found recently to be involved in tumorigenesis. However, its function in pancreatic cancer remains poorly understood. Here, we found that the expression of TRAF6 was up-regulated in pancreatic cancer tissues. Moreover, over-expression of TRAF6 in pancreatic cancer cells promoted cell proliferation and migration, whereas down-regulation of TRAF6 impaired the tumorigenicity of pancreatic cancer cells in vitro and in vivo. Mechanistically, TRAF6 regulated the expression of multiple genes involved in cell growth, apoptosis and migration. Our results suggested several important roles of TRAF6 in the pathogenesis of pancreatic cancer. TRAF6 might therefore represent a potential therapeutic target.