Catharanthus roseus, the Madagascar periwinkle, synthesizes bioactive monoterpenoid indole alkaloids, among which the anti-cancer drugs vinblastine and vincristine. The monoterpenoid branch of the alkaloid pathway leads to the secoiridoid secologanin and involves the enzyme iridoid synthase (IS), a member of the progesterone 5β-reductase (P5βR) family. IS reduces 8-oxogeranial to iridodial. Through transcriptome mining, we show that IS belongs to a family of six C. roseus P5βR genes. Characterisation of recombinant CrP5βR proteins demonstrates that all but CrP5βR3 can reduce progesterone, and thus can be classified as P5βRs. Three of them, namely CrP5βR1, CrP5βR2 and CrP5βR4, could also reduce 8-oxogeranial, pointing to a possible redundancy with IS (corresponding to CrP5βR5) in secoiridoid synthesis. In depth functional analysis by subcellular protein localisation, gene expression analysis, in situ hybridisation and virus-induced gene silencing, indicates that besides IS, CrP5βR4 may also participate in secoiridoid biosynthesis. Finally, we cloned a set of P5βR genes from angiosperm plant species not known to produce iridoids and demonstrate that the corresponding recombinant proteins are also capable of using 8-oxogeranial as a substrate. This suggests that 'IS activity' is intrinsic to angiosperm P5βR proteins and has evolved early during evolution.
Keywords: Catharanthus roseus; Erysimum crepidifolium; Madagascar periwinkle; Medicago truncatula; VEP1-encoded enone-reductases; monoterpenoid indole alkaloid; progesterone reductase; secoiridoid.
© The Author 2014. Published by the Molecular Plant Shanghai Editorial Office in association with Oxford University Press on behalf of CSPB and IPPE, SIBS, CAS.