This study evaluated the use of a Fenton's reaction in a falling film solar reactor (FFR), as a possible advanced oxidation process for the mineralization of the organic compound phenol in water. Preliminary tests were carried out to evaluate phenol degradation by photolysis and to select the optimal residence time in which to carry out the process using a solar photo-Fenton system. The variables studied were the initial phenol concentration (100 to 300 mg L(-1)), the [Phenol]:[H2O2] mass ratio (1.0 to 2.0) and the [H2O2]/[Fe2+] molar ratio (5 to 10). Phenol degradation of 99% and chemical oxygen demand (COD) reduction of 97% were obtained under the following reaction conditions: phenol concentration=200 mg L(-1), mass ratio [Phenol]:[H2O2]=1.5 and molar ratio [H2O2]/[Fe2+]=7.5. Overall mineralization was achieved using the solar photo-Fenton process to destroy phenol and COD. The solar photo-Fenton process using a FFR appears to be a viable method for removing phenols in wastewaters on an industrial scale.