A second-generation novel chemo-mechanical autonomous drug release system, incorporating various improvements over our first-generation system, was fabricated and evaluated. Enhanced oxygen uptake by the enzyme membrane of the organic engine was facilitated by optimizing the quantity of enzyme immobilizer, PVA-SbQ, and by hydrophobizing the membrane surface. Various quantities of PVA-SbQ were evaluated in the organic engine by measuring the decompression rate, with 1.5 mg/cm(2) yielding optimum results. When fluororesin was used as a hydrophobizing coating, the time to reach the peak decompression rate was shortened 2.3-fold. The optimized elements of the system were evaluated as a unit, first in an open loop and then in a closed loop setting, using a mixture of glucose solution (25 mmol/L), ATP and MgCI2 with glucose hexokinase enzyme (HK) as a glucose reducer. In conclusion, feedback-control of physiologically relevant glucose concentration was demonstrated by the second-generation drug release system without any requirement for external energy.
Keywords: Artificial pancreas; Chemo-mechanical; Enzyme membrane; Hexokinase.
Copyright © 2014 Elsevier B.V. All rights reserved.