Efforts to reduce the ever-increasing rates of osteoarthritis (OA) in the developed world require the ability to non-invasively detect the degradation of joint tissues before advanced damage has occurred. This is particularly relevant for damage to articular cartilage because this soft tissue lacks the capacity to repair itself following major damage and is essential to proper joint function. While conventional magnetic resonance imaging (MRI) provides sufficient contrast to visualize articular cartilage morphology, more advanced imaging strategies are necessary for understanding the underlying biochemical composition of cartilage that begins to break down in the earliest stages of OA. This review discusses the biochemical basis and the advantages and disadvantages associated with each of these techniques. Recent implementations for these techniques are touched upon, and future considerations for improving the research and clinical power of these imaging technologies are also discussed.