The magnetic structure and electronic ground state of the layered perovskite Ba(2)IrO(4) have been investigated using x-ray resonant magnetic scattering. Our results are compared with those for Sr(2)IrO(4), for which we provide supplementary data on its magnetic structure. We find that the dominant, long-range antiferromagnetic order is remarkably similar in the two compounds and that the electronic ground state in Ba(2)IrO(4), deduced from an investigation of the x-ray resonant magnetic scattering L(3)/L(2) intensity ratio, is consistent with a J(eff)=1/2 description. The robustness of these two key electronic properties to the considerable structural differences between the Ba and Sr analogues is discussed in terms of the enhanced role of the spin-orbit interaction in 5d transition metal oxides.