Colony size predicts division of labour in attine ants

Proc Biol Sci. 2014 Oct 22;281(1793):20141411. doi: 10.1098/rspb.2014.1411.

Abstract

Division of labour is central to the ecological success of eusocial insects, yet the evolutionary factors driving increases in complexity in division of labour are little known. The size-complexity hypothesis proposes that, as larger colonies evolve, both non-reproductive and reproductive division of labour become more complex as workers and queens act to maximize inclusive fitness. Using a statistically robust phylogenetic comparative analysis of social and environmental traits of species within the ant tribe Attini, we show that colony size is positively related to both non-reproductive (worker size variation) and reproductive (queen-worker dimorphism) division of labour. The results also suggested that colony size acts on non-reproductive and reproductive division of labour in different ways. Environmental factors, including measures of variation in temperature and precipitation, had no significant effects on any division of labour measure or colony size. Overall, these results support the size-complexity hypothesis for the evolution of social complexity and division of labour in eusocial insects. Determining the evolutionary drivers of colony size may help contribute to our understanding of the evolution of social complexity.

Keywords: Formicidae; caste evolution; queen–worker dimorphism; social evolution; worker size polymorphism.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Ants / physiology*
  • Appetitive Behavior
  • Behavior, Animal*
  • Biological Evolution
  • Phylogeny
  • Population Density
  • Social Behavior*