Comparative studies of salinomycin-loaded nanoparticles prepared by nanoprecipitation and single emulsion method

Nanoscale Res Lett. 2014 Jul 15;9(1):351. doi: 10.1186/1556-276X-9-351. eCollection 2014.

Abstract

To establish a satisfactory delivery system for the delivery of salinomycin (Sal), a novel, selective cancer stem cell inhibitor with prominent toxicity, gelatinase-responsive core-shell nanoparticles (NPs), were prepared by nanoprecipitation method (NR-NPs) and single emulsion method (SE-NPs). The gelatinase-responsive copolymer was prepared by carboxylation and double amination method. We studied the stability of NPs prepared by nanoprecipitation method with different proportions of F68 in aqueous phase to determine the best proportion used in our study. Then, the NPs were prepared by nanoprecipitation method with the best proportion of F68 and single emulsion method, and their physiochemical traits including morphology, particle size, zeta potential, drug loading content, stability, and in vitro release profiles were studied. The SE-NPs showed significant differences in particle size, drug loading content, stability, and in vitro release profiles compared to NR-NPs. The SE-NPs presented higher drug entrapment efficiency and superior stability than the NR-NPs. The drug release rate of SE-NPs was more sustainable than that of the NR-NPs, and in vivo experiment indicated that NPs could prominently reduce the toxicity of Sal. Our study demonstrates that the SE-NPs could be a satisfactory method for the preparation of gelatinase-responsive NPs for intelligent delivery of Sal.

Keywords: Drug delivery; Gelatinase; Nanoparticles; Nanoprecipitation method; Salinomycin; Single emulsion method.