The roles of the RIIβ linker and N-terminal cyclic nucleotide-binding domain in determining the unique structures of the type IIβ protein kinase A: a small angle x-ray and neutron scattering study

J Biol Chem. 2014 Oct 10;289(41):28505-12. doi: 10.1074/jbc.M114.584177. Epub 2014 Aug 11.

Abstract

Protein kinase A (PKA) is ubiquitously expressed and is responsible for regulating many important cellular functions in response to changes in intracellular cAMP concentrations. The PKA holoenzyme is a tetramer (R2:C2), with a regulatory subunit homodimer (R2) that binds and inhibits two catalytic (C) subunits; binding of cAMP to the regulatory subunit homodimer causes activation of the catalytic subunits. Four different R subunit isoforms exist in mammalian cells, and these confer different structural features, subcellular localization, and biochemical properties upon the PKA holoenzymes they form. The holoenzyme containing RIIβ is structurally unique in that the type IIβ holoenzyme is much more compact than the free RIIβ homodimer. We have used small angle x-ray scattering and small angle neutron scattering to study the solution structure and subunit organization of a holoenzyme containing an RIIβ C-terminal deletion mutant (RIIβ(1-280)), which is missing the C-terminal cAMP-binding domain to better understand the structural organization of the type IIβ holoenzyme and the RIIβ domains that contribute to stabilizing the holoenzyme conformation. Our results demonstrate that compaction of the type IIβ holoenzyme does not require the C-terminal cAMP-binding domain but rather involves large structural rearrangements within the linker and N-terminal cyclic nucleotide-binding domain of the RIIβ homodimer. The structural rearrangements are significantly greater than seen previously with RIIα and are likely to be important in mediating short range and long range interdomain and intersubunit interactions that uniquely regulate the activity of the type IIβ isoform of PKA.

Keywords: Cyclic AMP (cAMP); Intrinsically Disordered Protein; Protein Domain; Protein Dynamic; Protein Kinase A (PKA); Protein Structure; Small Angle Neutron Scattering (SANS); Small Angle X-ray Scattering (SAXS).

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Catalytic Domain
  • Cyclic AMP / chemistry*
  • Cyclic AMP / metabolism
  • Cyclic AMP-Dependent Protein Kinase Catalytic Subunits / chemistry*
  • Cyclic AMP-Dependent Protein Kinase Catalytic Subunits / genetics
  • Cyclic AMP-Dependent Protein Kinase Catalytic Subunits / metabolism
  • Cyclic AMP-Dependent Protein Kinase RIIbeta Subunit / chemistry*
  • Cyclic AMP-Dependent Protein Kinase RIIbeta Subunit / genetics
  • Cyclic AMP-Dependent Protein Kinase RIIbeta Subunit / metabolism
  • Escherichia coli / genetics
  • Escherichia coli / metabolism
  • Gene Expression
  • Holoenzymes / chemistry*
  • Holoenzymes / genetics
  • Holoenzymes / metabolism
  • Isoenzymes / chemistry
  • Isoenzymes / genetics
  • Isoenzymes / metabolism
  • Mice
  • Models, Molecular
  • Mutation
  • Neutron Diffraction
  • Protein Binding
  • Protein Structure, Secondary
  • Protein Structure, Tertiary
  • Rats
  • Recombinant Proteins / chemistry
  • Recombinant Proteins / genetics
  • Recombinant Proteins / metabolism
  • Scattering, Small Angle
  • X-Ray Diffraction

Substances

  • Cyclic AMP-Dependent Protein Kinase RIIbeta Subunit
  • Holoenzymes
  • Isoenzymes
  • Recombinant Proteins
  • Cyclic AMP
  • Cyclic AMP-Dependent Protein Kinase Catalytic Subunits