A mandrel winding method, which can realize remarkable homogeneous plastic deformation at room temperature for various metallic glasses, is applied to characterize plastic flow units and study their relationship with macroscopic deformations and relaxations. The method can provide information on the activation energy, activation time, size, intrinsic relaxation time, distribution, and density of flow units. We find the plasticity of a metallic glass can be controlled through modulating the features of flow units. The results have benefits for better understanding the structural origins of deformations and relaxations, and for designing metallic glasses with improved performances.