Purpose: An oligonucleotide termed 'T-oligo' having sequence homology with telomere overhang has shown cytotoxicity in multiple cancers. We have demonstrated that T-oligo can induce apoptosis in androgen independent prostate cancer cell line DU-145. In this report, we evaluate the use of star-shaped tetraspermine (SSTS) for delivery of T-oligo.
Methods: SSTS was synthesized from spermine and its intrinsic cytotoxicity towards DU-145 cells was compared with spermine and branched polyethyleneimine (bPEI). Atomistic molecular dynamic (MD) simulations were conducted to understand binding and complexation of spermine and SSTS with T-oligo. Complexation was also determined using gel electrophoresis and SYBR gold assay. Complexes were characterized for size, cellular uptake and antiproliferative effect.
Results: SSTS exhibited significantly lower toxicity than spermine and bPEI. Its affinity towards T-oligo was significantly higher than spermine as determined by experimental studies and confirmed by MD simulations and it formed stable complexes (TONPs) with T-oligo. TONPs facilitated cellular uptake and nuclear accumulation of T-oligo and their cytotoxic potential was observed at concentration several folds lower than that required for T-oligo alone.
Conclusion: SSTS significantly enhanced therapeutic benefits associated with the use of T-oligo and can be developed as a delivery vehicle for its in-vivo therapeutic applications.