Background & aims: A variety of liver perfusion techniques have been proposed to protect liver grafts prior to implantation. We compared hypothermic and normothermic oxygenated perfusion techniques in a rat liver transplant model, using higher risk grafts obtained after cardiac arrest (DCD).
Methods: Rat livers were subjected to 30 or 60 min in situ warm ischemia, without application of heparin. Livers were excised and stored for 4 h at 4°C, mimicking DCD organ procurement, followed by conventional organ transport. In experimental groups, DCD liver grafts received a 4 h normothermic oxygenated perfusion through the portal vein and the hepatic artery instead of cold storage. The perfusate consisted of either full blood or leukocyte-depleted blood (normothermic groups). Other livers underwent hypothermic oxygenated perfusion (HOPE) for 1 h after warm ischemia and 4 h cold storage (HOPE group). Liver injury was assessed during machine perfusion and after isolated liver reperfusion, and by orthotopic liver transplantation (OLT).
Results: DCD livers, subjected to normothermic perfusion, disclosed reduced injury and improved survival compared to cold storage after limited warm ischemia of 30 min (70%; 7/10), but failed to protect from lethal injury in grafts exposed to 60 min warm ischemia (0%; 0/10). This finding was consistent with Kupffer and endothelial cell activation in cold stored and normothermic perfused livers. In contrast, HOPE protected from hepatocyte and non-parenchymal cell injury and led to 90% (9/10) and 63% (5/8) animal survival after 30 and 60 min of donor warm ischemia, respectively.
Conclusions: This is the first evidence that HOPE is superior to normothermic oxygenated perfusion in a clinically relevant model through modulation of the innate immunity and endothelial cell activation.
Keywords: DCD liver; Hypothermic oxygenated perfusion; Liver transplantation; Normothermic oxygenated liver perfusion; Survival.
Copyright © 2014 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.