Klebsiella pneumoniae strains can produce different virulence factors, such as fimbrial adhesins and siderophores, which are important in the colonization and development of the infection. The aims of this study were to determine the occurrence of fimH, mrkD, and irp2 virulence genes in 22 KPC-2-producing K. pneumoniae isolates as well as 22 not producing-KPC isolates, from patients from different hospitals in Recife-PE, Brazil, and also to analyze the clonal relationship of the isolates by enterobacterial repetitive intergenic consensus-polymerase chain reaction (ERIC-PCR). The genes were detected by PCR and DNA sequencing. The bla KPC-2 gene was identified in 22 KPC-positive isolates. On analyzing the antimicrobial susceptibility profile of the isolates, it was detected that polymyxin and amikacin were the antimicrobials of best activity against K. pneumoniae. On the other hand, five isolates exhibited resistance to polymyxin. In the KPC-positive group, was observed a high rate of resistance to cephalosporins, followed by carbapenems. Molecular typing by ERIC-PCR detected 38 genetic profiles, demonstrating a multiclonal spread of the isolates analyzed. It was observed that the virulence genes irp2, mrkD, and fimH were seen to have together a higher frequency in the KPC-positive group. The accumulation of virulence genes of KPC-positive K. pneumoniae isolates, observed in this study, along with the multi-resistance impose significant therapeutic limitations on the treatment of infections caused by K. pneumoniae.