Response to an aerobic training intervention in young adults depends on ponderal index at birth

J Dev Orig Health Dis. 2012 Dec;3(6):424-32. doi: 10.1017/S2040174412000177.

Abstract

Poor fetal growth is associated with later-life changes in adult body composition and decrements in muscle strength and morphology. Few studies have investigated the association of poor fetal growth with whole-body exercise. The purpose of this study was to investigate the association of poor fetal growth with the maximal oxygen consumption (VO(2)max), lactate levels during exercise and the response to aerobic training. Thirty-six college-aged men and women (aged 20.8 ± 0.3 years), born to term (37-42 weeks gestation), were recruited to participate in an 8-week training program. Participants comprised two groups, high ponderal index (HIGHPI) and low ponderal index (LOWPI) (n = 18/group), identified as falling above and below the 10th percentile of the ponderal index (g/cm(3))-for-gestational age distribution, respectively. The HIGHPI and LOWPI were matched pair-wise on age, sex, body mass index and pre-study physical activity patterns. The LOWPI and HIGHPI did not differ significantly before training, after training or with a change (Δ) in training VO(2)max (l/min or ml/min kg/fat-free mass (FFM)). However, LOWPI had significantly lower pre-training lactate levels at similar levels of relative work output (P = 0.016), and significantly smaller decreases in lactate at a fixed level of absolute work after training (P = 0.044). These differences were independent of pre-training aerobic fitness, the change in fitness with training, diet and fuel substrate choice. The lower lactate of untrained LOWPI subjects during exercise could reflect metabolic reprograming due to intrauterine growth restriction, or could be secondary to muscle morphological and/or fiber-type distribution changes that also associate with poor fetal growth.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Adult
  • Birth Weight*
  • Body Composition
  • Exercise*
  • Female
  • Fetal Development*
  • Fetal Growth Retardation / metabolism
  • Humans
  • Infant, Newborn
  • Lactic Acid / metabolism
  • Male
  • Oxygen Consumption
  • Young Adult

Substances

  • Lactic Acid