Although numerous studies have shown the significance of cancer-specific aerobic glycolysis, how glycolysis contributes to tumor invasion, a critical phenomenon in metastasis, remains unclear. With regard to colorectal cancer (CRC), we studied two critical gate enzymes, hexokinase 2 (HK2), which is involved in glycolysis, and phosphorylated pyruvate dehydrogenase-E1α (p-PDH), which is involved in oxidative phosphorylation (OxPhos). Immunohistochemical analyses using anti-HK2 and p-PDH antibodies were performed on surgically resected CRC samples (n = 104), and the expression in invasive front lesions of tumors was assessed. Positive HK2 expression correlated with extensive tumor diameter (P = 0.0460), advanced tumor depth (P = 0.0395), and presence of lymph node metastasis (P = 0.0409). Expression of p-PDH tended to be higher in right-sided CRCs than in left-sided CRCs (P = 0.0883). In survival analysis, the combined evaluation of positive HK2 and negative p-PDH was associated with reduced recurrence-free survival (RFS) (P = 0.0169 in all stages and P = 0.0238 in Stage II and III patients, respectively). This evaluation could predict RFS more precisely than the independent evaluation. The present study indicated that high HK2 expression combined with low p-PDH expression in the invasive front lesions of CRC tumors is predictive of tumor aggressiveness and survival of CRC cases.
Keywords: Colorectal cancer; hexokinase; invasion; metastasis; pyruvate dehydrogenase.
© 2014 The Authors. Cancer Science published by Wiley Publishing Asia Pty Ltd on behalf of Japanese Cancer Association.